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Exploring synergy between CUB models and quantile regression:
a comparative analysis through continuousized data

Cristina Davino∗ , Rosaria Simone∗∗ , Domenico Vistocco∗∗∗

Abstract: The paper investigates a parallel between CUB models and quantile regression

through an illustrative case study on rating data. While CUB models have been proposed

for modeling ordinal variables, quantile regression is mostly convenient for quantitative re-

sponses. The goal is to advance a comprehensive approach in which discrete ordinal out-

comes on one hand and their continuousized version on the other coexist so to take advantage

of two modern modeling frameworks.

Keywords: CUB models, Quantile Regression, Continuousized data.

1. Introduction and Motivation

The generalization of empirical findings from average is one of the factors
that generates the common sense of diffidence about Statistics in the layman.
It is efficiently described in the flaw of averages: “plan based on the assump-
tions that average conditions will occur are usually wrong” (Savage, 2002).
The focus on the mean is a widespread approach even among insiders, since
most applied Statistics is related to the estimation of average effects. The sen-
tence that introduces regression in the book of Mosteller and Tukey (1977)
is a clear invitation for insiders to go beyond the mean: “Just as the mean
gives an incomplete picture of a single distribution, so the regression curve
gives a correspondingly incomplete picture for a set of distributions”. The if
and how the insiders have welcomed (and will welcome) this invitation can
help to dissipate layman’s mistrust in statistical tools. The flaw of averages
is becoming increasingly important in recent times because of the huge data
dimension and of the complexity of the relationships among the data itself
(Aguilar, 2018).
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In this framework, Quantile Regression (QR), which was introduced as far
back as 1978 (Koenker and Basset 1978), can be revitalised and regarded as
one of the most modern and challenging methods in the era of big data. QR is
based on the estimation of a set of conditional quantiles of a response variable
as a function of a set of covariates. The method allows to verify if the effect
played by the regressors varies on the low, middle and upper parts of the de-
pendent variable thus suggesting different interpretation paths and revealing a
scale and/or shape effect (Davino et al. 2014). If on one hand QR can be con-
sidered complementary to classical ordinary least squared regression (OLS),
on the other hand the method represents a proper and suitable option when
the homoschedastic assumption of the classical regression model cannot be
satisfied, if the dependent variable has a skewed distribution or in presence of
outliers. Nevertheless QR and the implied interpretation are not always suit-
able for ordinal data analysis, especially in cases where the response is on a
finite discrete support and with a low number of possible answers. This is very
common in survey data where the number of categories typically ranges from
5 up to 10 and thus a straightforward quantile modeling can raise some issues
being not always greatly informative. In this respect, a manyfold perspec-
tive can be adopted with CUB models (D’Elia and Piccolo, 2005). The main
feature of this class of models is the parsimonious yet flexible specification
of both perceptual and decisional aspects of the rating process as a mixture
of feeling and uncertainty directly on the measurement scale (Piccolo et al.,
2018). Thus, both QR and CUB models are appealing statistical frameworks
for the analysis of evaluation–type data, for continuous and ordinal responses
respectively. This contribution aims to investigate the connection between the
two approaches. A combined analysis of CUB models and QR can be pursued
if continuous variables are collected and then discretized, or conversely if gen-
uine ordinal outcomes are continuosized. We opt here for the latter strategy,
exploiting a solution proposed by Tamhane et al. (2002). In particular, let R
be an ordinal variable collected on a rating scale coded with integers 1, . . . ,m

(m > 3). If nj is the observed cell count for R = j, then continousized data
in [0, 1] can be obtained by uniformly spreading such observation in the inter-

val
(j − 1

m
,
j

m

]
to be then rescaled in the interval [1,m]. The approach can

102



C. Davino et al., Quantile CUB regression models

be easily adapted in case categories are not equally spaced. In the following
a brief introduction of the two methods, CUB and QR, along with remarks
on their possible integrated use will be provided through an illustrative case
study on rating data.

2. CUB and QR in a nutshell

For quantitative variables measuring latent traits like happiness, social be-
haviors, self-evaluations, and so on, it is often preferable to pursue a dis-
cretization to summarize the phenomenon into ordered categories. Since in
these cases it is of primary importance to understand the psychological mech-
anism driving the response process, the framework of CUB models offers
advantageous interpretation of results by allowing a combined modeling of
perceptual and decisional aspects of the choice. The rationale of this class
of models is that each respondent has a propensity to provide a deliberate
answer which is unavoidably mixed with the indeterminacy produced by the
discretization of the latent trait. As an extreme circumstance, such indetermi-
nacy collapses to a random choice. Thus, if Ri is the rating response given by
the i–th subject and collected on a rating scale coded with integers 1, . . . ,m

(m > 3), then a two-component mixture is specified between a shifted bino-
mial and a discrete uniform distribution:

Pr
(
Ri = r | πi, ξi

)
= πi

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1 + (1− πi)

1

m
,

logit(πi) = β
′
yi, logit(ξi) = γ

′
wi,

where yi, wi are subjects’ covariates specified to identify response profiles.
The parameter ξi is referred to as the feeling parameter since 1− ξi measures
the preference of a category over the lower ones in a sequence of pairwise
comparisons among categories. The mixing weight πi, instead, is called the
uncertainty parameter since 1 − πi measures the overall uncertainty of the
respondent’s assessment: then, in particular, the larger it is, the higher the
overall heterogeneity in the response distribution. ML estimation of param-
eter can be implemented by running the EM algorithm, and significance of
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variables’ effects can be checked according to Wald test (Piccolo, 2006).
Quantile regression has been instead proposed to model the whole conditional
distribution of a response y given a set of p covariates X, data observed on
n units. Although models to deal with binary, nominal and categorical re-
sponses recently appeared in literature, QR is mostly used in case of numeri-
cal responses. In this paper we restrict our consideration to the case of linear
effects. In such a case, QR estimates separate linear models for different
quantiles θ ∈ [0, 1]:

yi(θ) = β0(θ) + x>i β(θ) + εi, (1)

such that P (εiθ ≤ 0) = θ and i = 1, . . . , n. The separate models are in-
terpretable in terms of regression models for the quantiles of the response.
The conditional distribution of the response can be estimated using a dense
set of conditional quantiles. QR is distribution free since it does not pose any
parametric assumption for the error (and hence response) distribution. The co-
efficients are commonly estimated through a variant of the simplex algorithm,
while interior–point methods are especially suitable to deal with large scale
problems (Koenker, 2005). Alternative estimators have been recently pro-
posed exploiting the asymmetric Laplace distribution as a convenient model
for the error distribution, thus allowing to embed QR in the likelihood frame-
work and to extend it in a bayesian approach (Furno, Vistocco, 2018). As
regards inference, QR estimators are asymptotically normal distributed with
different forms of the covariance matrix depending on the model assumptions;
resampling methods being a valid and widespread option.

3. The case study on relational goods and leisure time

The combined analysis between CUB models and QR will be discussed on
the basis of a self-evaluation of the family making ends meet collected during
a survey at University of Naples Federico II in December 2014. The purpose
of the survey was to carry out an observational study on relational goods and
activities for leisure time. Questionnaires were filled by students who were
in turn asked to administer it also to acquaintances of theirs, according to a
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snowball sampling scheme. Every participant was asked to evaluate family
end meet (from now, EndsMeet) on a 10-point Likert scale, ranging from 1
= ‘never, at all’ to 10 = ‘always, a lot’. In the end, a sample of n = 2181

observations is considered. The goal is investigating the effects that the fol-
lowing covariates have on EndsMeet: Child and Residence, two dichotomous
factors respectively with level 1 if there is any child aged less than 12 in the
family and if the respondent lives in Naples or in its province. The solution
proposed by Tamhane et al. (2002) has been used to transform the ordinal
variable EndsMeet into continuousized data, so to use it as response variable
in the QR model. Figure 2 (left-hand side) shows the observed frequency
distribution of EndsMeet, with the kernel density of the corresponding con-
tinuousized data superimposed. The distribution of continuousized EndsMeet
in the categories of the two covariates is shown in the right-hand part of Fig-
ure 2. The distribution of the response variable appears asymmetric in the
group of families with at least one child less than 12 years old. It is worth
of mention that just 20% of the interviewed belongs to this category and that
almost 74% lives in Naples or in its province. The complete dataset with de-
tailed description of all the collected variables is loaded within the R package
CUB (Iannario et al., 2018), which has been used for CUB models, tests and
validation; for quantile regression, the R package quantreg (Koenker, 2018)
has been used.

3.1. A parallel between CUB and QR results

The simplest QR model with a dichotomous regressor can help in testing
the synergy between QR and CUB. Table 1 (first block of rows) reports the
OLS and QR coefficients at five chosen quantiles, θ=[0.1, 0.25, 0.5, 0.75, 0.9]
in a model with only Child as regressor. Either the OLS and the QR coeffi-
cients are significant with p-values less than 0.001 (standard errors have been
estimated through resampling methods). but QR integrates results provided
by classical regression. For example, having children less than 12 years old
negatively impacts on the capability to get end of the month but this effect is
higher on the lowest part of the distribution (at the 10% percentile is almost
twice the average effect) and it becomes negligible and not significant on the
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Table 1. OLS and QR estimated parameters for the two considered models

OLS θ = 0.1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

Child β̂0 6.33 3.08 5.01 6.57 7.96 9.11
β̂1 -0.45 -0.88 -0.68 -0.52 -0.27 -0.10

Residence β̂0 0.60 0.22 0.45 0.64 0.79 0.91
β̂1 -0.03 -0.02 -0.02 -0.04 -0.04 -0.03

highest part of the distribution (estimating a much more dense of quantiles, it
results that the lowest slope is equal to -1.14 and the highest to 0.006). Thus,
there is evidence for heterogeneity of effects of the regressor along the mea-
surements scale. This claim is fully supported by inspecting CUB regression
fit to the ordinal data (BIC = 9689.38):

logit(1−π̂i) = 0.100
(0.099)

+0.687
(0.256)

Childi, logit(1−ξ̂i) = 0.694
(0.040)

− 0.255
(0.114)

Childi.

As a result, responses are more heterogeneous in case there is a child aged less
than 12 years in the family (uncertainty importance in the sense of weight for
the uniform distribution increases from 1 − π̂0 = 0.529 to 1 − π̂1 = 0.697

when switching from Child = 0 to Child = 1, whereas perceived easiness
in making ends meet (as measured by 1− ξ̂i) decreases from 0.668 to 0.617.

A further investigation of the synergy deriving from a conjoint use of QR
and CUB is realised using the second regressor, Residence, which is dichoto-
mous too but with a different impact on the response variable. Indeed, it
affects only the location of the distribution being statistically significant only
for the feeling component (as evident also from the right panel of Figure 3):

1− π̂ = 0.557
(0.022)

, logit(1− ξ̂i) = 0.873
(0.084)

− 0.281
(0.094)

Residencei

Specifically, being resident in the metropolitan area of Naples decreases (per-
ceived) easiness in making ends meet. The constant uncertainty level given
Residence gains insight when looking at QR results on the continuousized re-
sponse: the impact of living in Naples or in its province is negative but almost
constant along the distribution (see second block of rows in Table 1). More-
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Figure 1. Rating data and continuousized version for the rating: Do you
easily make ends meet? (left). Boxplot for the continuousized version given
Child and Residence (right))
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Figure 2. Conditional CUB distributions given Child (left-hand side) and
Residence(right-hand side))
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over, this effect is related to very high standard errors in the lowest part of the
distribution.

4. Conclusions and future research

The paper has advanced a comparative application of quantile regression
methods for quantitative responses and CUB models for rating data: contin-
uousized data allows to switch from one setting to the other with the goal of
understanding mutual advantages, analogies and differences of the two ap-
proaches. Particular emphasis has been given to the interpretation of uncer-
tainty and heterogeneity of regressors’ effects. In this vein, future research
developments can be outlined by simulation studies and more challenging
empirical evidence.
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