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One can also show that the EM algorithm always converges to a local or global
maximum, or at least to a saddlepoint of the log-likelihood. However, the conver-
gence can be quite slow; typically, more iterations are required than for the Newton—
Raphson algorithm. Another disadvantage is that the algorithm does not automati-
cally give the observed Fisher information. Of course, this can be calculated after
convergence if the second derivative of the log-likelihood /(8; x) of the observed
data x is available.

24 Quadratic Approximation of the Log-Likelihood Function

An important approximation of the log-likelihood function is based on a quadratic
function. To do so, we apply a Taylor approximation of second order (cf. Ap-
pendix B.2.3) around the MLE 68y, :
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Due to S(Oy) = 0, the quadratic approximation of the relative log-likelihood is
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Example 2.15 (Poisson model) Assume that we have one observation x = 11 from
a Poisson distribution Po(eA) with known offset ¢ = 3.04 and unknown parameter
A. The MLE of A is XML =x/e =3.62, cf. Example 2.4. The observed Fisher infor-
mation turns out to be I (Ayy) = x / )A»l%,[L, so that the quadratic approximation of the
relative log-likelihood is
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Figure 2.7 displays /(1) and its quadratic approximation. |

Example 2.16 (Normal model) Let X., denote a random sample from a normal
distribution N(u, o'?) with unknown mean p and known variance o2. We know
from Example 2.9 that

1 n
() = 252 izzl(xi - M)z

R B L VR S
= 202{;()@ X)"+n(x —w) ¢,



38 2 Likelihood

Fig. 2.7 Relative
log-likelihood (1) and its
quadratic approximation
(dashed line) for a single
observation x = 11 from a
Poisson distribution with
mean eA and known offset
e=3.04 = —15
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Both sides of Eq. (2.17) are hence identical, so the quadratic approximation is here
exact. |

Under certain regularity conditions, which we will not discuss here, it can be
shown that a quadratic approximation of the log-likelihood improves with increasing
sample size. The following example illustrates this phenomenon in the binomial
model.

Example 2.17 (Binomial model) Figure 2.8 displays the relative log-likelihood of
the success probability 7 in a binomial model with sample size n = 10, 50, 200,
1000. The observed datum x has been fixed at x = 8, 40, 160, 800 such that the MLE
of 7 is my = 0.8 in all four cases. We see that the quadratic approximation of the
relative log-likelihood improves with increasing sample size n. The two functions
are nearly indistinguishable for n = 1000. |

The advantage of the quadratic approximation of the relative log-likelihood lies
in the fact that we only need to know the MLE éML and the observed Fisher in-
formation / (éML), no matter what the actual log-likelihood looks like. However, in
certain pathological cases the approximation may remain poor even if the sample
size increases.
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Fig. 2.8 Quadratic approximation (dashed line) of the relative log-likelihood (solid line) of the
success probability 7 in a binomial model

Example 2.18 (Uniform model) Let X1., denote a random sample from a contin-
uous uniform distribution U(0, ) with unknown upper limit & € R™. The density
function of the uniform distribution is

1
fx:0) = 5'[0,9)(36)

with indicator function 14(x) equal to one if x € A and zero otherwise. The likeli-
hood function of 6 is
[T- f(xi;0) =6"" for 6 > max; (x;),

L) =
©) 0 otherwise,
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a) Likelihood L(#) - 10° for n = 5,6,7 (from top b) Log-likelihood 1(6) for n = 5,6,7,10, 30, 60
to bottom) and max; z; =7 (from top to bottom) and max; z; =7
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Fig. 2.9 Likelihood and log-likelihood function for a random sample of different size n from a

uniform distribution with unknown upper limit 6. Quadratic approximation of the log-likelihood is
impossible even for large n

with MLE éML = max; (x;), cf. Fig. 2.9a.
The derivatives of the log-likelihood function

[(0) = —nlog(0) for6 > max;(x;)

are
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so the log-likelihood /(#) is not concave but convex, with negative (!) observed
Fisher information, cf. Fig. 2.9b. It is obvious from Fig. 2.9b that a quadratic ap-
proximation to /(#) will remain poor even if the sample size n increases. The reason
for the irregular behaviour of the likelihood function is that the support of the uni-
form distribution depends on the unknown parameter 6. |

2.5 Sufficiency

Under certain regularity conditions, a likelihood function can be well characterised
by the MLE and the observed Fisher information. However, Example 2.18 illus-
trates that this is not always the case. An alternative characterisation of likelihood
functions is in terms of sufficient statistics, a concept which we will introduce in
the following. We will restrict our attention to random samples, but the description
could be easily generalised if required.



