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One can also show that the EM algorithm always converges to a local or global
maximum, or at least to a saddlepoint of the log-likelihood. However, the conver-
gence can be quite slow; typically, more iterations are required than for the Newton–
Raphson algorithm. Another disadvantage is that the algorithm does not automati-
cally give the observed Fisher information. Of course, this can be calculated after
convergence if the second derivative of the log-likelihood l(θ;x) of the observed
data x is available.

2.4 Quadratic Approximation of the Log-Likelihood Function

An important approximation of the log-likelihood function is based on a quadratic
function. To do so, we apply a Taylor approximation of second order (cf. Ap-
pendix B.2.3) around the MLE θ̂ML:

l(θ) ≈ l(θ̂ML) + dl(θ̂ML)

dθ
(θ − θ̂ML) + 1

2
d2l(θ̂ML)

dθ2 (θ − θ̂ML)
2

= l(θ̂ML) + S(θ̂ML)(θ − θ̂ML) − 1
2

· I (θ̂ML)(θ − θ̂ML)
2.

Due to S(θ̂ML) = 0, the quadratic approximation of the relative log-likelihood is

l̃(θ) = l(θ) − l(θ̂ML) ≈ −1
2

· I (θ̂ML)(θ − θ̂ML)
2. (2.17)

Example 2.15 (Poisson model) Assume that we have one observation x = 11 from
a Poisson distribution Po(eλ) with known offset e = 3.04 and unknown parameter
λ. The MLE of λ is λ̂ML = x/e = 3.62, cf. Example 2.4. The observed Fisher infor-
mation turns out to be I (λ̂ML) = x/λ̂2

ML, so that the quadratic approximation of the
relative log-likelihood is

l̃(λ) ≈ −1
2

x

λ̂2
ML

(λ − λ̂ML)
2.

Figure 2.7 displays l̃(λ) and its quadratic approximation. !

Example 2.16 (Normal model) Let X1:n denote a random sample from a normal
distribution N(µ,σ 2) with unknown mean µ and known variance σ 2. We know
from Example 2.9 that

l(µ) = − 1
2σ 2

n∑

i=1

(xi − µ)2

= − 1
2σ 2

{
n∑

i=1

(xi − x̄)2 + n(x̄ − µ)2

}

,
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Fig. 2.7 Relative
log-likelihood l̃(λ) and its
quadratic approximation
(dashed line) for a single
observation x = 11 from a
Poisson distribution with
mean eλ and known offset
e = 3.04

l(µ̂ML) = − 1
2σ 2

n∑

i=1

(xi − x̄)2, and hence

l̃(µ) = l(µ) − l(µ̂ML) = − n

2σ 2 (x̄ − µ)2,

but we also have

−1
2

· I (µ̂ML)(µ − µ̂ML)
2 = − n

2σ 2 (µ − x̄)2.

Both sides of Eq. (2.17) are hence identical, so the quadratic approximation is here
exact. !

Under certain regularity conditions, which we will not discuss here, it can be
shown that a quadratic approximation of the log-likelihood improves with increasing
sample size. The following example illustrates this phenomenon in the binomial
model.

Example 2.17 (Binomial model) Figure 2.8 displays the relative log-likelihood of
the success probability π in a binomial model with sample size n = 10, 50, 200,
1000. The observed datum x has been fixed at x = 8, 40, 160, 800 such that the MLE
of π is π̂ML = 0.8 in all four cases. We see that the quadratic approximation of the
relative log-likelihood improves with increasing sample size n. The two functions
are nearly indistinguishable for n = 1000. !

The advantage of the quadratic approximation of the relative log-likelihood lies
in the fact that we only need to know the MLE θ̂ML and the observed Fisher in-
formation I (θ̂ML), no matter what the actual log-likelihood looks like. However, in
certain pathological cases the approximation may remain poor even if the sample
size increases.
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Fig. 2.8 Quadratic approximation (dashed line) of the relative log-likelihood (solid line) of the
success probability π in a binomial model

Example 2.18 (Uniform model) Let X1:n denote a random sample from a contin-
uous uniform distribution U(0, θ) with unknown upper limit θ ∈ R+. The density
function of the uniform distribution is

f (x; θ) = 1
θ

I[0,θ)(x)

with indicator function IA(x) equal to one if x ∈ A and zero otherwise. The likeli-
hood function of θ is

L(θ) =
{∏n

i=1 f (xi; θ) = θ−n for θ ≥ maxi (xi),

0 otherwise,
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Fig. 2.9 Likelihood and log-likelihood function for a random sample of different size n from a
uniform distribution with unknown upper limit θ . Quadratic approximation of the log-likelihood is
impossible even for large n

with MLE θ̂ML = maxi (xi), cf. Fig. 2.9a.
The derivatives of the log-likelihood function

l(θ) = −n log(θ) for θ > maxi (xi)

are

S(θ̂ML) = dl(θ̂ML)

dθ
≠ 0 and −I (θ̂ML) = d2l(θ̂ML)

dθ2 = n

θ̂2
ML

> 0,

so the log-likelihood l(θ) is not concave but convex, with negative (!) observed
Fisher information, cf. Fig. 2.9b. It is obvious from Fig. 2.9b that a quadratic ap-
proximation to l(θ) will remain poor even if the sample size n increases. The reason
for the irregular behaviour of the likelihood function is that the support of the uni-
form distribution depends on the unknown parameter θ . !

2.5 Sufficiency

Under certain regularity conditions, a likelihood function can be well characterised
by the MLE and the observed Fisher information. However, Example 2.18 illus-
trates that this is not always the case. An alternative characterisation of likelihood
functions is in terms of sufficient statistics, a concept which we will introduce in
the following. We will restrict our attention to random samples, but the description
could be easily generalised if required.


