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2.6.32. Uncle Harry and Aunt Minnie will both be attend-
ing your next family reunion. Unfortunately, they hate
each other. Unless they are seated with at least two people
between them, they are likely to get into a shouting match.
The side of the table at which they will be seated has seven
chairs. How many seating arrangements are available for
those seven people if a safe distance is to be maintained
between your aunt and your uncle?

2.6.33. In how many ways can the digits 1 through 9 be
arranged such that

(a) all the even digits precede all the odd digits?
(b) all the even digits are adjacent to each other?
(c) two even digits begin the sequence and two even

digits end the sequence?
(d) the even digits appear in either ascending or

descending order?

Counting Permutations (when the objects are not all distinct)
The corollary to Theorem 2.6.1 gives a formula for the number of ways an entire set
of n objects can be permuted if the objects are all distinct. Fewer than n! permutations
are possible, though, if some of the objects are identical. For example, there are 3!=6
ways to permute the three distinct objects A, B, and C :

ABC
ACB
BAC
BCA
CAB
CBA

If the three objects to permute, though, are A, A, and B—that is, if two of the three
are identical—the number of permutations decreases to three:

AAB
ABA
BAA

As we will see, there are many real-world applications where the n objects to be
permuted belong to r different categories, each category containing one or more
identical objects.

Theorem
2.6.2

The number of ways to arrange n objects, n1 being of one kind, n2 of a second
kind, . . . , and nr of an r th kind, is

n!
n1!n2! · · ·nr !

where
r∑

i=1
ni = n.

Proof Let N denote the total number of such arrangements. For any one of those N ,
the similar objects (if they were actually different) could be arranged in n1!n2! · · ·nr !
ways. (Why?) It follows that N · n1!n2! · · ·nr ! is the total number of ways to arrange
n (distinct) objects. But n! equals that same number. Setting N · n1!n2! · · ·nr ! equal
to n! gives the result. !
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Comment Ratios like n!/(n1!n2! · · ·nr !) are called multinomial coefficients because
the general term in the expansion of

(x1 + x2 + · · · + xr )
n

is
n!

n1!n2! · · ·nr !
xn1

1 xn2
2 · · · xnr

r

Example
2.6.14

A pastry in a vending machine costs 85̸c. In how many ways can a customer put in
two quarters, three dimes, and one nickel?

Order in which coins are deposited

1 2 3 5 64

Figure 2.6.13

If all coins of a given value are considered identical, then a typical deposit
sequence, say, QDDQND (see Figure 2.6.13), can be thought of as a permutation
of n = 6 objects belonging to r = 3 categories, where

n1 = number of nickels = 1

n2 = number of dimes = 3

n3 = number of quarters = 2

By Theorem 2.6.2, there are sixty such sequences:

n!
n1!n2!n3!

= 6!
1!3!2! = 60

Of course, had we assumed the coins were distinct (having been minted at different
places and different times), the number of distinct permutations would have been
6!, or 720.

Example
2.6.15

Prior to the seventeenth century there were no scientific journals, a state of affairs
that made it difficult for researchers to document discoveries. If a scientist sent a
copy of his work to a colleague, there was always a risk that the colleague might
claim it as his own. The obvious alternative—wait to get enough material to publish a
book—invariably resulted in lengthy delays. So, as a sort of interim documentation,
scientists would sometimes send each other anagrams—letter puzzles that, when
properly unscrambled, summarized in a sentence or two what had been discovered.

When Christiaan Huygens (1629–1695) looked through his telescope and saw
the ring around Saturn, he composed the following anagram (191):

aaaaaaa, ccccc,d, eeeee, g,h, i i i i i i i, llll,mm,

nnnnnnnnn,oooo, pp,q, rr, s, t t t t t,uuuuu

How many ways can the sixty-two letters in Huygens’s anagram be arranged?
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Let n1(= 7) denote the number of a’s, n2(= 5) the number of c’s, and so on.
Substituting into the appropriate multinomial coefficient, we find

N = 62!
7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!

as the total number of arrangements. To get a feeling for the magnitude of N , we
need to apply Stirling’s formula to the numerator. Since

62! .=
√

2πe−626262.5

then

log(62!) .= log
(√

2π
)
− 62 · log(e)+ 62.5 · log(62)

.= 85.49731

The antilog of 85.49731 is 3.143 × 1085, so

N .= 3.143 × 1085

7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!

is a number on the order of 3.6 × 1060. Huygens was clearly taking no chances!
(Note: When appropriately rearranged, the anagram becomes “Annulo cingitur
tenui, plano, nusquam cohaerente, ad eclipticam inclinato,” which translates to
“Surrounded by a thin ring, flat, suspended nowhere, inclined to the ecliptic.”)

Example
2.6.16

What is the coefficient of x23 in the expansion of (1 + x5 + x9)100?
To understand how this question relates to permutations, consider the simpler

problem of expanding (a + b)2:

(a + b)2 = (a + b)(a + b)

= a · a + a · b + b · a + b · b

= a2 + 2ab + b2

Notice that each term in the first (a + b) is multiplied by each term in the second
(a +b). Moreover, the coefficient that appears in front of each term in the expansion
corresponds to the number of ways that that term can be formed. For example, the
2 in the term 2ab reflects the fact that the product ab can result from two different
multiplications:

(a + b)(a + b︸ ︷︷ ︸
ab

) or (a + b) (a︸︷︷︸
ab

+ b)

By analogy, the coefficient of x23 in the expansion of (1 + x5 + x9)100 will be the
number of ways that one term from each of the one hundred factors (1+ x5 + x9) can
be multiplied together to form x23. The only factors that will produce x23, though,
are the set of two x9’s, one x5, and ninety-seven 1’s:

x23 = x9 · x9 · x5 · 1 · 1 · · ·1

It follows that the coefficient of x23 is the number of ways to permute two x9’s, one
x5, and ninety-seven 1’s. So, from Theorem 2.6.2,
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coefficient of x23 = 100!
2!1!97!

= 485,100

Example
2.6.17

A palindrome is a phrase whose letters are in the same order whether they are read
backward or forward, such as Napoleon’s lament

Able was I ere I saw Elba.

or the often-cited

Madam, I’m Adam.

Words themselves can become the units in a palindrome, as in the sentence

Girl, bathing on Bikini, eyeing boy,

finds boy eyeing bikini on bathing girl.

Suppose the members of a set consisting of four objects of one type, six of a sec-
ond type, and two of a third type are to be lined up in a row. How many of those
permutations are palindromes?

Think of the twelve objects to arrange as being four A’s, six B’s, and two C ’s.
If the arrangement is to be a palindrome, then half of the A’s, half of the B’s, and
half of the C ’s must occupy the first six positions in the permutation. Moreover, the
final six members of the sequence must be in the reverse order of the first six. For
example, if the objects comprising the first half of the permutation were

C A B A B B

then the last six would need to be in the order

B B A B A C

It follows that the number of palindromes is the number of ways to permute the
first six objects in the sequence, because once the first six are positioned, there is only
one arrangement of the last six that will complete the palindrome. By Theorem 2.6.2,
then,

number of palindromes = 6!/(2!3!1!)= 60

Example
2.6.18

A deliveryman is currently at Point X and needs to stop at Point 0 before driv-
ing through to Point Y (see Figure 2.6.14). How many different routes can he take
without ever going out of his way?

Notice that any admissible path from, say, X to 0 is an ordered sequence of 11
“moves”—nine east and two north. Pictured in Figure 2.6.14, for example, is the
particular X to 0 route

E E N E E E E N E E E

Similarly, any acceptable path from 0 to Y will necessarily consist of five moves east
and three moves north (the one indicated is E E N N E N E E).
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X

O

Y

Figure 2.6.14

Since each path from X to 0 corresponds to a unique permutation of nine E ’s
and two N ’s, the number of such paths (from Theorem 2.6.2) is the quotient

11!/(9!2!)= 55

For the same reasons, the number of different paths from 0 to Y is

8!/(5!3!)= 56

By the multiplication rule, then, the total number of admissible routes from X to Y
that pass through 0 is the product of 55 and 56, or 3080.

Example
2.6.19

A burglar is trying to deactivate an alarm system that has a six-digit entry code. He
notices that three of the keyboard buttons—the 3, the 4, and the 9—are more pol-
ished than the other seven, suggesting that only those three numbers appear in the
correct entry code. Trial and error may be a feasible strategy, but earlier misadven-
tures have convinced him that if his probability of guessing the correct code in the
first thirty minutes is not at least 70%, the risk of getting caught is too great. Given
that he can try a different permutation every five seconds, what should he do? He
could look for an unlocked window to crawl through (or, here’s a thought, get an
honest job!). Deactivating the alarm, though, is not a good option.

Table 2.6.3 shows that 570 six-digit permutations can be made from the numbers
3, 4, and 9.

Table 2.6.3

Form of Permutations Example Number

One digit appears four
times; other digits appear
once

449434 6!/(4!1!1!)× 3 = 90

One digit appears three
times; another appears
twice; and a third appears
once

944334 6!/(3!2!1!)× 3! = 360

Each digit appears twice 439934 6!/(2!2!2!)× 1 = 120

TOTAL: 570
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Guessing at the rate of one permutation every five seconds would allow 360
permutations to be tested in thirty minutes, but 360 is only 63% of 570, so the bur-
glar’s 70% probability criteria of success would not be met. (Question: The first
factors in Column 3 of Table 2.6.3 are applications of Theorem 2.6.2 to the sam-
ple permutations shown in Column 2. What do the second factors in Column 3
represent?)

Questions

2.6.34. Which state name can generate more permuta-
tions, TENNESSEE or FLORIDA?

2.6.35. How many numbers greater than four million can
be formed from the digits 2, 3, 4, 4, 5, 5, 5?

2.6.36. An interior decorator is trying to arrange a shelf
containing eight books, three with red covers, three with
blue covers, and two with brown covers.

(a) Assuming the titles and the sizes of the books are
irrelevant, in how many ways can she arrange the
eight books?

(b) In how many ways could the books be arranged if
they were all considered distinct?

(c) In how many ways could the books be arranged if the
red books were considered indistinguishable, but the
other five were considered distinct?

2.6.37. Four Nigerians (A, B, C , D), three Chinese (#, ∗,
&), and three Greeks (α, β, γ ) are lined up at the box
office, waiting to buy tickets for the World’s Fair.

(a) How many ways can they position themselves if the
Nigerians are to hold the first four places in line;
the Chinese, the next three; and the Greeks, the last
three?

(b) How many arrangements are possible if members of
the same nationality must stay together?

(c) How many different queues can be formed?
(d) Suppose a vacationing Martian strolls by and wants

to photograph the ten for her scrapbook. A bit
myopic, the Martian is quite capable of discerning
the more obvious differences in human anatomy
but is unable to distinguish one Nigerian (N) from
another, one Chinese (C) from another, or one
Greek (G) from another. Instead of perceiving a
line to be B∗β AD#&Cαγ , for example, she would
see NCGNNCCNGG. From the Martian’s perspec-
tive, in how many different ways can the ten funny-
looking Earthlings line themselves up?

2.6.38. How many ways can the letters in the word

S L U M G U L L I O N

be arranged so that the three L’s precede all the other
consonants?

2.6.39. A tennis tournament has a field of 2n entrants, all
of whom need to be scheduled to play in the first round.
How many different pairings are possible?

2.6.40. What is the coefficient of x12 in the expansion of
(1 + x3 + x6)18?

2.6.41. In how many ways can the letters of the word

E L E E M O S Y N A R Y

be arranged so that the S is always immediately followed
by a Y ?

2.6.42. In how many ways can the word ABRA-
CADABRA be formed in the array pictured below?
Assume that the word must begin with the top A and
progress diagonally downward to the bottom A.

      A

     B  B

    R  R  R

   A  A  A  A

  C  C  C  C  C

 A  A  A  A  A  A

  D  D  D  D  D

   A  A  A  A

    B  B  B

     R  R

      A

2.6.43. Suppose a pitcher faces a batter who never swings.
For how many different ball/strike sequences will the
batter be called out on the fifth pitch?

2.6.44. What is the coefficient of w2x3 yz3 in the expansion
of (w + x + y + z)9?

2.6.45. Imagine six points in a plane, no three of which
lie on a straight line. In how many ways can the six points
be used as vertices to form two triangles? (Hint: Number
the points 1 through 6. Call one of the triangles A and the
other B. What does the permutation


